If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10t^2+5t+5=0
a = -10; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·(-10)·5
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*-10}=\frac{-20}{-20} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*-10}=\frac{10}{-20} =-1/2 $
| 45+5/6x=5- | | 7x-1+48=98 | | X^2+36x=-12 | | 3+34x=75 | | -5x^2=3x^2-5x | | x6+17x3+66=0 | | 2y-5=3/2 | | X+2x+10=120 | | 6(-12y+5)+6(6y-4)=94 | | x=0.8(x+200) | | 6(-12y+5)+5(6y-4)=-94 | | 0.5x+20=0.4x+30 | | 7x5=3x=27 | | 4x-7/3=19 | | 7x=3x+84 | | 11/10x=56 | | 6x-2=8x-121 | | 1/t=1.5 | | (2x+5)+(2x)+x=180 | | (X+2)+(2x+1)+(3x-9)=36 | | 10+x)(3x-9)=0 | | 2x+18=5x+11 | | 17+r=19 | | 15=11+r | | 8=r5 | | 7x-5=x-73 | | r9=4 | | 12x-5+8x+35=180 | | 16=r+14 | | 2/4+2x+46=31+5x+16-61 | | (x-12)(5x)=90 | | x/3+5=11x3 |